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A noncanonical cytoplasmic role for BUB1 in restraining 
DNA damage–induced dsRNA accumulation and 
sensing within stress granules
Mengjie Hu1*, Dong Pan1, Meng Jiao1, Xuhui Bao1, Xinjian Liu2, Fang Li1, Chuan-Yuan Li1,3,4*

Budding uninhibited by benzimidazoles 1 (BUB1) is a nuclear serine/threonine protein kinase that ensures proper 
chromosome segregation before mitosis. We report that BUB1 plays an unexpected cytoplasmic role in restraining 
DNA damage–induced accumulation of cytoplasmic dsRNA and the ensuing immune response. Tumors deficient 
in BUB1 were sensitive to radiotherapy in a CD8 T cell–dependent manner. We found increased immune cell infiltra-
tion accompanied by elevated type I interferon production from irradiated BUB1-deficient cells caused by enhanced 
cytoplasmic dsRNA accumulation and activation of the MDA5/MAVS dsRNA-sensing pathway. Mechanistically, we found 
that after radiation exposure, BUB1 underwent nucleus-to-cytoplasm migration, where it bound and phosphorylated 
the poly(A)-binding protein PABPC1, which was degraded together with its associated messenger RNAs stored in the 
stress granules, thereby preventing dsRNA accumulation and activation of the innate immune response.

INTRODUCTION
Budding uninhibited by benzimidazoles 1 (BUB1) is a mitotic check-
point serine/threonine-protein kinase initially identified in genetic 
screens in the yeast Saccharomyces cerevisiae (1, 2). BUB1 binds to the 
kinetochore and is critical in the mitotic spindle assembly check-
point (SAC), which ensures accurate chromosome segregation dur-
ing mitosis (2–5). Besides its crucial role in regulating the cell cycle, 
evidence suggests that BUB1 is associated with accelerated Myc-
induced lymphoma development in transgenic mice (6). Further-
more, the overexpression of BUB1 is implicated in the progression 
of several human malignancies, including those of the bladder, breast, 
prostate, and ovary (7–10). BUB1 is suggested as a prognostic bio-
marker and therapeutic target for some cancer types (11). Bay1816032, 
a high-affinity BUB1 kinase inhibitor, sensitizes tumor cells toward 
chemotherapeutic drugs, such as taxanes, ATR (ataxia telengiectasia-
related), and poly(ADP-ribose) polymerase inhibitors in vitro and 
in vivo (12). It also sensitizes tumor cells to radiotherapy (13). How-
ever, the mechanism of BUB1 inhibition–mediated chemotherapy and 
radiotherapy sensitization has not been elucidated.

Stress granules (SGs) are part of the membrane-less organelles 
(14) that consist of protein-mRNA complexes that form in response 
to diverse stressors, such as osmotic, oxidative, hypoxic, and mito-
chondrial stresses, ultraviolet and ionizing radiation, and viral or 
bacterial infections, in various organisms (from yeast to mammali-
an cells) (15–17). SGs contain stalled translating mRNAs, transla-
tion initiation components, and additional proteins affecting mRNA 
function (18). They are critical in the antiviral immune response (19, 20) 
and tumor response to radiotherapy (21, 22). Recent evidence links SG 
formation to cytosolic viral RNA sensors, such as MDA5 (melanoma 
differentiation-associated protein 5), RIG-I (retinoic acid-inducible gene 
I), and double-stranded RNA (dsRNA)–activated protein kinase (23), 

which trigger an innate immune response through type I interferons 
(IFNs) (20). SGs contain nontranslating mRNAs and numerous RNA 
binding proteins, such as G3BP1 (Ras GTPase-activating protein-
binding protein 1), poly(A)-binding protein C1 (PABPC1), TIA1 
(TIA1 cytotoxic granule associated RNA binding protein), and Ataxin2 
(17, 24, 25). The poly(A)-binding protein PABPC1 plays a role in reg-
ulating mRNA translation and stability (26, 27).

In the present study, we showed that BUB1 deficiency–enhanced 
tumor radiotherapy was dependent on the DDX58(RIG-I)/MDA5 
dsRNA-sensing pathway–induced IFN-stimulated genes (ISGs) and 
intratumoral lymphocyte infiltration. BUB1 inhibition led to the accu-
mulation of nontranslating dsRNA in the SGs upon ionizing radiation 
exposure, causing RIG-I/MDA5 activation. In addition, nucleus-
localized BUB1 migrated into the cytoplasm to promote proteasome-
mediated degradation of PABPC1 and associated mRNA-derived 
dsRNA, suppressing radiation-induced dsRNA accumulation and 
type I IFN production. Our findings reveal a cytoplasmic role for BUB1, 
suggesting potential approaches to enhance radiotherapy and other 
cytotoxic cancer therapies.

RESULTS
Bub1 in murine tumor radiotherapy and immunotherapy
CRISPR-Cas9 (28)–mediated knockdown of Bub1 (fig. S1, A and B) 
in B16F10 and 4T1 murine tumors did not notably affect growth 
in vitro (fig. S1, C to G) or in vivo (Fig. 1, A and B). However, radio-
therapy efficacy was enhanced substantially in both B16F10-Bub1KD 
(Fig. 1, A and B) and 4T1-Bub1KD tumors (Fig. 1, C and D). Because 
no growth defects were observed in vitro (fig. S1, C to G), we hypoth-
esized that the immune system mediated the enhanced response to 
radiotherapy in Bub1-deficient tumors. Our results in nude mice 
(fig. S1, H to J) supported this hypothesis.

Murine glioma CT2A-Bub1KD cells (fig. S1K) formed tumors at 
a slower rate, and radiotherapy completely prevented tumor forma-
tion from the Bub1KO CT2A cells (Fig. 1, E and F). Radiotherapy 
“cured” mice showed resistance to WT CT2A rechallenge (Fig. 1, G 
and H). Furthermore, in Lewis lung carcinoma (LLC) (29, 30), Bub1KD 
strongly enhanced the radiotherapy of LLC (fig. S1, L to N).
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Fig. 1. BUB1 depletion enhances tumor response to radiotherapy and its combination with anti-PD1 therapy. (A and B) Tumor volume (A) and Kaplan-Meier sur-
vival curve (B) of C57BL/6 mice inoculated with about 1 × 105 VC or Bub1KD B16F10 cells and treated with radiotherapy (8 Gy). (C and D) Tumor volume (C) and Kaplan-
Meier survival curve (D) of Balb/c mice inoculated with about 2 × 105 VC or Bub1KD 4T1 cells and treated with radiotherapy (8 Gy). (E and F) Tumor volume (E) and 
Kaplan-Meier survival curve (F) of C57BL/6 mice inoculated with about 2 × 105 VC or Bub1KD CT2A cells and treated with radiotherapy (8 Gy). (G and H) Tumor volume 
(G) and Kaplan-Meier survival curve (H) of naïve and previously challenged but tumor-free C57BL/6 mice after being inoculated with 1 × 105 WT CT2A tumor cells. Tumor-
free C57BL/6 mice were rechallenged after remaining tumor-free 60 days after the initial challenge with Bub1KD CT2A cells. (I and J) Tumor volume (I) and Kaplan-Meier 
survival curve (J) of C57BL/6 mice inoculated with about 1 × 105 B16F10 cells and treated with radiotherapy (8 Gy) and Bay1816032 (10 mg/kg) or vehicle (daily from days 4 
to 14) postinoculation. (K and L) Tumor volume (K) and Kaplan-Meier survival curve (L) of C57BL/6 mice inoculated with about 1 × 105 B16F10 cells and then treated with 
radiotherapy (8 Gy), Bub1 inhibitor Bay1816032 (10 mg/kg), or vehicle (daily from days 4 to 14) and treated with 100 μg per mouse anti-PD1 or isotype control antibody 
on days 11, 14, and 17 postinoculation. (M to O) Average numbers of tumor-infiltrating CD8 T cells (M), GZMB+ CD8 T cells (N), and IFN-γ+ CD8 T cells (O) per milligram of 
tumor tissue from VC or Bub1KD B16F10 tumors treated with or without radiotherapy (8 Gy) on day 8 postinoculation. Flow cytometry analysis was done on day 14 after 
inoculation of 1 × 105 tumor cells. Data were grouped from two independent experiments. (P and Q) Tumor volume (P) and Kaplan-Meier survival curve (Q) of C57BL/6 
mice inoculated with about 1 × 105 VC or Bub1KD B16F10 cells, treated with radiotherapy (8 Gy) and inoculated with 100 μg per mouse of anti-CD8 antibody or isotype 
control on days 11, 14, and 17. Error bars represent the SEM. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001; n.s., not significant, as determined by two-way ANOVA 
[(A), (C), (E), (G), (I), (K), and (M) to (P)] or log-rank test [(B), (D), (F), (H), (J), (L) and (Q)]. Bay, Bay1816032; con, control; IR, ionizing radiation; iso, isotype antibody control; veh, 
vehicle control.
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In further experiments, Bub1KD enhanced anti-PD1 (programmed 
death 1) therapy when combined with radiotherapy in B16F10 tumors 
(fig. S1, O to Q). Bay1816032, a BUB1 inhibitor, which has been shown 
to strengthen paclitaxel or docetaxel treatment (12), enhanced radio-
therapy treatment of B16F10 tumors (fig. S1, R and S, and Fig. 1, I and 
J). It also enhanced anti-PD1 antibody therapy in combination with 
radiotherapy (Fig. 1, K and L).

BUB1 in human cancer treatment
BUB1 overexpression was shown to be associated with response to 
cancer therapies (31). We analyzed RNA sequencing (RNA-seq) data 
of 9736 tumors and 8587 normal tissue samples from TCGA (The 
Cancer Genome Atlas) using the GEPIA (Gene Expression Profiling 
Interactive Analysis) website (32). We found that expression of 
BUB1 was higher in tumor versus normal tissue in 22 of 33 malig-
nancies (fig. S2A). Patients with low BUB1 expression had a better 
overall survival (OS) than those with high BUB1 expression in the 
TCGA pan-cancer cohort (fig. S2B).

In individual TCGA cohort analysis, we found that in glioblastoma 
multiforme, bladder cancer, sarcoma, and mesothelioma, radiotherapy-
treated patients with low BUB1 mRNA expression (the median value 
was used to stratify the patients) had better OS than those with high 
expression. In several other TCGA cohorts, BUB1 mRNA expression 
levels did not predict clinical outcome (fig. S2, C to M).

In further analysis of RNA-seq data from patients with glioma in 
the CGGA (Chinese Glioma Genome Atlas) database (33), we found 
that radiation-treated patients with primary glioma with low BUB1 
expression had better OS than those with high BUB1 expression 
(fig. S2N and data file S1). The same applied to patients with CCGA 
glioma undergoing temozolomide treatment (fig. S2O and data file S1).

BUB1 influences the tumor microenvironment 
after radiotherapy
We next explored the influences of BUB1 on the human tumor im-
mune microenvironment using the TIP (Tracking Immunopheno-
type Profiling) tool to analyze the RNA-seq data from radiotherapy- and 
chemotherapy-treated CGGA glioma with high or low BUB1 expres-
sion (33, 34). CIBERSORT analysis showed that CD8 memory T cells 
were present at higher frequencies in radiotherapy-treated BUB1-low 
gliomas (fig. S3, A and B). In comparison, the infiltration of B, natural 
killer (NK), and regulatory T cells showed no significant differences 
between the two groups (fig. S3, C to E). We subsequently used the 
gene set enrichment analysis (GSEA) tool to profile anticancer 
immunity across the seven-step cancer-immunity cycle (fig. S3F) 
(35–37). BUB1-low patients had higher overall and individual (steps 
3, 4, and 5) immune activity scores than the BUB1-high patients 
(fig. S3, G to L, and data file S1). Furthermore, the recruitment scores 
of CD8 T, overall T, T helper 1 (TH1), TH2, TH17, and TH22 cells 
were higher in BUB1-low patients. In contrast, monocyte and eo-
sinophil recruitment scores showed no difference (fig. S3, M to T, 
and data file S1).

We also analyzed the tumor-infiltrating lymphocytes (TILs) in 
vector control (VC) and Bub1-deficient B16F10 tumors after irra-
diation (see fig. S4A for flow cytometry gating strategy). Irradiated 
Bub1-deficient B16F10 tumors had more CD8 and CD4 T cell infil-
tration than controls (Fig. 1M and fig. S4B). Furthermore, they had 
increased levels of granzyme-B+ (GzmB+) CD8 and IFN-γ+ CD8 T 
cells (Fig. 1, N and O), indicators of activated cytotoxic T cells. In 
contrast, radiotherapy caused no significant increases in NK1.1+ 

NK cells (fig. S4C). In further experiments, we depleted CD8 T cells, 
CD4 T cells, NK cells, macrophage cells, plasmacytoid dendritic cells, 
and monocytes and observed their influences on tumor growth. 
Depletion of CD8 T cells or CD4 T cells abrogated or attenuated 
radiotherapy-induced tumor growth delay in Bub1-deficient B16F10 
tumors. In comparison, depletion of NK cells, macrophage cells, plas-
macytoid dendritic cells, and monocytes had no effect (Fig. 1, P and 
Q, and fig. S4, D to M). Our results suggested that Bub1 deficiency–
mediated enhancement of radiotherapy depended on intratumoral 
infiltration of CD8 and CD4 T cells.

BUB1 inhibition– and radiotherapy-induced type I 
IFN response
After radiation, GSEA of RNA-seq data of Bub1-deficient B16F10 
cells indicated enrichment of the reactome pathways associated with 
innate immune response and antiviral response compared with VC 
cells (Fig. 2, A and B, and data file S2). Moreover, the top gene ontol-
ogy (GO) pathways and biological process (BP) in GO analysis 
were mainly associated with the cellular immune response to viral 
infection in Bub1-deficient B16F10 cells (fig. S5, A to D, and data file 
S2). In the absence of radiation exposure, the top terms of BP in GO 
pathway analysis were not associated with immune response in 
Bub1-deficient B16F10 cells (fig. S5E).

Our GSEA highlighted the importance of DDX58(RIG-I)/IFIH1 
(inteferon-induced helicase C domain-containing protein 1) path-
way (Fig. 2A). Because RIG-I/MDA5 activation synergized with ra-
diotherapy and anti-PD1 therapy (38, 39), we examined this pathway 
in Bub1KD cells. Bub1 deficiency enhanced radiation-induced tran-
scription of several ISGs downstream of the MDA5 pathway (fig. S5, F 
to H). Comparable results were observed in B16F10 cells treated 
with Bay1816032 (fig. S5, I to K). Furthermore, restoration of BUB1 
expression in BUBKD human HCT116 cells abrogated ISG induc-
tion after radiation (fig. S5, L to P).

The IFNAR (interferon-alpha/beta receptor) pathway, directly 
downstream of interferon regulatory factor 7 (IRF7), was implicated 
in radiation-induced tumor suppression (40). We examined whether 
IFNAR is involved in Bub1 deficiency–mediated enhancement of ra-
diotherapy. Our results indicated that the blockade of IFNAR attenu-
ated radiation-induced tumor growth delay in Bub1-deficient B16F10 
tumors (fig. S5, Q and R).

The MDA5/RIG-I pathway in BUB1 inhibition–mediated 
radiotherapy enhancement
Protein levels of IRF7, MDA5, and RIG-I increased in irradiated 
Bub1-deficient B16F10 melanoma (fig. S6A), human breast cancer 
MDA-MB-231 cells, and human colon cancer HCT116 cells (Fig. 2C 
and fig. S6, B and C) in a time- and dose-dependent manner when 
compared with those in VC cells. ISGs are known to be activated by 
the MDA5 dsRNA-sensing pathway (41). To determine whether the 
MDA5/RIG-I pathway was responsible for Bub1 deficiency–mediated, 
radiation-induced ISG induction, we generated MDA5–, IRF7–, 
and RIG-I–knockdown cells in VC and Bub1KD cells (fig. S6, D to 
F). Quantitative reverse transcription polymerase chain reaction (qRT-
PCR) analysis of ISG mRNA levels indicated that radiation-induced 
ISG activation in Bub1-deficient B16F10 cells was attenuated in the 
double-knockdown (DKD) cells (Fig. 2, D to I, and fig. S6, G to I).

We then compared the tumor formation rates of Bub1KD, Bub1/
Mda5-DKD, Bub1/Irf7-DKD, and Bub1/Rig-I DKD B16F10 cells 
in syngeneic C57BL/6 mice undergoing radiotherapy. As expected, 
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Fig. 2. BUB1 inhibition enables radiation-induced type I IFN induction by promoting cytoplasmic dsRNA accumulation, which activates the RIG-I/MDA5 signal-
ing pathway. (A) Reactome analysis of the top 21 up-regulated pathways in Bub1KD versus VC B16F10 cells after exposure to 8-Gy x-rays. (B) GSEA of IFN-α response in 
control and Bub1KD B16F10 cells treated with radiotherapy (8 Gy). The FDR (false discovery rate) value was calculated using the GSEA tool. NES, normalized enrichment 
score. (C) Protein immunoblot analysis of expression of MDA5, RIG-I, STING (stimulator of interferon genes), and cGas (cyclic GMP-AMP synthase) in VC and BUB1KD MDA-
MB-231 cells at 24, 72, and 120 hours after exposure to 8-Gy x-rays. GAPDH was used to control protein loading. (D to F) Transcription levels of IFN response genes Isg15 
(D), Irf7 (E), and Ifit1 (F) in VC, Bub1KD, or Bub1/MDA5DKO B16F10 cells at 120 hours after exposure to 8-Gy x-rays as analyzed by real-time qRT-PCR. (G to I) Transcription 
levels of IFN response genes ISG15 (G), IFN-β (H), and IFIT1 (I) in VC, Bub1KD, or Bub1/Irf7 DKD B16F10 cells at 120 hours after exposure to 8-Gy x-rays as analyzed by real-
time qRT-PCR. (J and K) Tumor volume (J) and Kaplan-Meier survival curve (K) of C57BL/6 mice inoculated with about 1 × 105 VC, Mda5KD, Bub1KD, or Bub1/Mda5DKD 
B16F10 cells and treated with radiotherapy (8 Gy). (L and M) Tumor volume (L) and Kaplan-Meier survival curve (M) of C57BL/6 mice inoculated with about 1 × 105 VC, 
Irf7KD, Bub1KD, or Bub1/Irf7DKD B16F10 cells and treated with radiotherapy (8 Gy). (N and O) Representative immunofluorescence images (N) and relative mean immu-
nofluorescence intensities (O) of dsRNA-specific J2 antibody staining in control and Bub1KD B16 after exposure to 8-Gy x-ray. Scale bars, 10 μm. (P to T) The relative mRNA 
transcript levels of Ly6D (P), ALDH3A1 (Q), MYL2 (R), ALDH3B1 (S), and MALT1 (T) from the cytoplasmic fractions of control and BUB1KD HCT116 cells at 120 hours after ex-
posure to 8-Gy x-rays and by qRT-PCR. Error bars represent the SEM. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001; n.s., not significant, as determined by two-way 
ANOVA [(D) to (F), (G) to (I), (J), (L), and (O) to (T)] or log-rank test [(K) and (M)]. h, hours.
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deletion of Mda5, Irf7, or Rig-I (Fig. 2, J to M, and fig. S6J, K) was suf-
ficient to abrogate Bub1 inhibition–elicited antitumor immunity and 
tumor growth delay upon radiotherapy. In contrast, the ISG tran-
scriptional activation and tumor growth in Bub1-deficient B16F10 
cells were not attenuated in Bub1/Sting-DKD cells after radiotherapy 
(fig. S6, L to P). Our results thus suggested that the dsRNA-sensing 
MDA5/RIG-I pathway was responsible for Bub1 deficiency–mediated 
tumor growth delay after radiotherapy. Similar results could be found 
in HCT116 BUB1/MDA5DKO and BUB1/MAVSDKO cells (fig. S6, 
Q to W). In addition, doxorubicin, a commonly used chemotherapy 
drug (42), also induced enhanced expression of MDA5 in the BUB1KD 
HCT116 cells (fig. S6X) when compared with that in VC cells.

BUB1 and radiation-induced cytoplasmic 
accumulation of dsRNA
The MDA5/RIG-I pathway senses cytoplasmic dsRNA to stimulate 
an antiviral immune response (43). To investigate whether Bub1 in-
hibition caused enhanced MDA5 pathway activation by inducing cy-
toplasmic dsRNAs upon radiation or doxorubicin exposure, we used 
a well-established antibody, J2, to stain dsRNA (44). Radiation expo-
sure increased cytoplasmic dsRNA levels in Bub1KD B16F10 cells 
(Fig. 2, N and O) and MDA-MB-231 cells (fig. S7, A and B) compared 
with those in VC cells. In addition, the BUB1 inhibitor Bay1816032 also 
induced enhanced cytoplasmic dsRNA accumulation when in combina-
tion with radiation (fig. S7, C and D) treatment. In addition, doxorubicin 
also induced enhanced cytoplasmic dsRNA in the BUB1KD HCT116 
cells (fig. S7, E and F) compared with that in VC cells.

We conducted RNA-seq analysis to determine the identity of the 
cytoplasmic RNAs up-regulated in irradiated, BUB1-deficient cells. 
The top terms of BP and molecular function pathways in GSEA 
were associated with metabolic process and cytokine production 
(fig. S7, G to I). We also identified some genes whose mRNAs were 
up-regulated in BUB1KD HCT116 cells treated with irradiation 
(fig. S7J). We then used qRT-PCR analysis to quantify a subset of the 
genes. Our analysis indicated that Ly6D (lymphocyte antigen family 
member D), ALD3A1 (aldehyde dehydrogenase 3A1), ALDH3B1 (alde-
hyde dehydrogenase 3B1), MYL2 (myosin regulatory light chain 2), and 
MALT1 (mucosa-associated lymphoid tissue lymphoma transloca-
tion protein 1) were increased in BUB1KD cells after radiation (Fig. 2, P 
to T). To further determine whether some of these radiation–up-
regulated cytoplasmic RNAs were in dsRNA forms, we used J2 to pull 
down the dsRNAs in the lysates and quantified the RNAs by qRT-PCR. 
We examined 14 J2-bound transcripts and found that they were ex-
pressed at higher levels in BUB1KD cells after radiation (fig. S8, A to N).

To further prove that the transcripts were in dsRNA form, we used 
an independent method developed to detect dsRNAs (45) and de-
signed two different strand primers (sense and antisense chains) for 
five different transcripts. We then analyzed the presence of their dsRNA 
forms through strand-specific RT-PCR (45). The result showed that 
both chains of putative dsRNA forms of each of the five transcripts 
were up-regulated in the cytoplasm (see fig. S8O for fractionation 
validation) of BUB1KD HCT116 cells when compared with that in 
VC cells (fig. S8, P to T).

BUB1 interactions with PABPC1 after radiation exposure
To understand the molecular mechanism of how BUB1 suppressed 
mRNA-based cytosolic dsRNA accumulation after radiation exposure, 
we generated HCT116 cells overexpressing Flag-BUB1 (fig. S9A). 
We then pulled down BUB1 and its associated proteins using an 

anti-Flag antibody. Liquid chromatography–tandem mass spectrom-
etry (LC-MS/MS) was used to identify interactors of BUB1 in ir-
radiated cells, following established methods (46). We identified 67 
BUB1-interacting proteins up-regulated and 145 down-regulated 
after radiation (Fig. 3A, fig. S9B, and data file S3). Among them, 
PABPC1, a cytoplasmic protein essential for mRNA processing, sta-
bility, and protein translation, is ranked as the third most up-regulated 
BUB1 interactor after radiation. In contrast, the top two BUB1 in-
teractors were BUB1 itself and BUB3, both known to be integral 
members of the SAC that played prominent roles during mitosis 
(fig. S9C) (2–5).

We next used the STRING (Search Tool for the Retrieval of Inter-
acting Genes/Proteins) database, which includes known and predicted 
protein-protein interactions, to analyze up-regulated and down-
regulated proteins among BUB1 interactors after radiation exposure 
(47). GO analysis indicated that among BUB1 interactors, the top up-
regulated proteins are mainly involved in RNA processing, whereas 
the down-regulated proteins are primarily those involved in various 
cellular metabolic processes (fig. S9D and data file S3). We found 
many down-regulated proteins among the SG-associated proteins 
(fig. S9E) (17). SGs are protein-RNA complexes that form in response 
to diverse stressors (such as oxidative stress, ionizing radiation, and 
infections) in diverse organisms (15, 48). Among them, PABPC1 is 
considered a major marker of SGs and was previously found to be 
involved in the formation of SGs (17, 49). Because PABPC1 binds the 
3′ end of mRNAs, the interaction of BUB1 with PABPC1 suggested a 
potential mechanism through which BUB1 could influence RNA lev-
els in the cytoplasm, particularly within the SGs, in irradiated cells.

BUB1 and PABPC1 domains facilitating their interaction
Coimmunoprecipitation (co-IP) assay revealed that HA (hemaggluti-
nin)–PABPC1 interacted with Flag-BUB1 in a radiation-dependent 
manner (Fig. 3B), and the appearance of upper ladder-like PABPC1 
bands hinted at potential ubiquitination of PABPC1 by BUB1, which 
will be touched on later. The addition of Bay1816032 inhibited 
radiation-induced interaction between BUB1 and PABPC1 (Fig. 3C), 
indicating that the interaction depends on BUB1 kinase activity. Next, 
we attempted to identify the protein domains in BUB1 and PABPC1 
responsible for the interaction between the two. BUB1 contains five 
major domains (Fig. 3D)—TPR (tetratricopeptide), B3BD (Bub3 bind-
ing domain), CD1, KEN, and the kinase domain—with the TPR do-
main critical for Mad3 (MAX dimerization protein 3) binding and the 
kinase domain responsible for its catalytic function (50, 51). Our co-
IP experiment revealed that the only mutant that could not interact 
with PABPC1 after radiation was the one without the kinase domain 
(Fig. 3, D and E), thereby suggesting that the kinase domain of 
BUB1 was responsible for interacting with PABPC1 after irradia-
tion. This result is consistent with the finding that inhibition of the 
kinase activity of BUB1 abrogated its radiation-induced interaction 
with PABPC1 (Fig. 3C).

PABPC1 consists of four RNA binding domains [RRM (RNA rec-
ognition motif) 1 to 4], a linker region (PRR; proline-rich region), 
and a C-terminal MLLE (MademoiseLLE) domain [PABC; poly(A)-
binding protein C-terminal domain] (Fig. 3F). RRM1-4 binds poly(A) 
and can bind adenine/uridine-rich RNA (26, 52), and the C-terminal 
MLLE domain can facilitate binding to the peptide motif PAM2 
(53–55). The linker region contains serine-proline and threonine-
proline residues, and it is critical for translation initiation (56). After 
irradiation, co-IP experiments revealed that the mutant without the 
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Fig. 3. DNA-damaging stress induces a nucleus-to-cytoplasm migration of BUB1 and its interaction with PABPC1 in the cytoplasm. (A) Comparison of individual 
protein abundance among BUB1-interacting proteins before and after radiation exposure as quantified using LC-MS/MS. Enriched and depleted proteins are indicated 
using red versus blue dots. (B) IP/protein immunoblot analysis of the interaction between Flag-Bub1 and HA-PABPC1 after cellular exposure to x-rays. Plasmids encoding 
the two genes were transduced into human HCT116 cells, and cells were exposed to 8 Gy of x-rays. Cells were lysed at 24 and 72 hours after x-ray exposure, and the lysates 
were immunoprecipitated with an anti-Flag antibody. The IP products were then probed with an anti-HA antibody by protein immunoblot analysis. (C) IP/protein immu-
noblot analysis of the interaction between exogenously transduced Flag-Bub1 and HA-PABPC1 in HCT116 cells treated with or without 1 μM Bay1816032 and 72 hours 
after exposure to 8-Gy x-rays. (D) The domain structure of human BUB1 and different truncation mutants used in this study. (E) IP/protein immunoblot analysis of the in-
teraction between full-length HA-PABPC1 and full-length or different Flag-BUB1 truncation mutant in the human HCT116 cells. Lysates from cells 72 hours after exposure 
to 8-Gy x-rays were immunoprecipitated with an anti-HA antibody and probed with an anti-Flag antibody by protein immunoblot analysis. (F) The domain structure of 
human PABPC1 and different truncation mutants generated in this study. (G) IP/protein immunoblot analysis of the interaction between full-length Flag-BUB1 and full-
length or different HA-PABPC1 truncation mutants in the human HCT116 cells. Lysates were collected from cells 72 hours after exposure to 8-Gy x-rays and were immu-
noprecipitated with an anti-HA antibody and probed with an anti-Flag antibody by protein immunoblot analysis. (H and I) Representative immunofluorescence images 
(H) and quantification of colocalization (I) of Flag-BUB1 and HA-PABPC1 in HCT116 cells at 72 hours after exposure to 8-Gy x-rays. The cells were costained with anti-Flag 
(magenta) and anti-HA (green) antibodies and DAPI and imaged by confocal microscopy. Scale bars, 10 μm. (J) IP/protein immunoblot analysis of the interaction between 
HA-PABPC1 and WT Flag-BUB1 or a kinase-dead (D946A) version of Flag-BUB1 at 72 hours after exposure to 8-Gy x-rays.
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PABC domain could interact with BUB1. At the same time, the one 
with only the RRM domains could not (Fig. 3, F and G). Together, 
these results suggested that the proline-rich linker region in PABPC1 
was responsible for interacting with BUB1 after irradiation.

Radiation-induced BUB1 migration out of the nucleus
Immunofluorescence staining of Flag-BUB1– and HA-PABPC1– 
transduced HCT116 cells indicated a nucleus-to-cytoplasm migration of 
BUB1 by day 3 after radiation exposure. There was a colocalization be-
tween BUB1 and PABPC1 in the cytoplasm at 72 hours postirradia-
tion (Fig. 3, H and I), consistent with the co-IP experiments. A BUB1 
deletion mutant lacking the kinase domain did not colocalize with 
PABPC1 (fig. S10, A and B, and data file S4). Meanwhile, a PABPC1 
deletion mutant only containing an RRM domain did not colocalize 
with BUB1 (fig. S10, C and D). To investigate whether the kinase 
activity was critical for interaction with PABPC1, we constructed a 
BUB1 kinase–dead mutant (D946A) (57) and coexpressed it with 
HA-PABPC1. As expected, BUB1 kinase–dead mutants could not 
interact with PABPC1 upon radiation exposure, unlike WT BUB1 
(Fig. 3J). Consistently, BUB1 kinase–dead mutant could colocalize 
with PABPC1 upon radiation exposure, unlike WT BUB1 (fig. S10, 
E and F). Consistently, cellular exposure to the chemotherapy agent 
doxorubicin also induced the interaction and colocalization between 
BUB1 and PABPC1 (fig. S10, G and H, and data file S4). We thus 
have evidence that BUB1 can migrate from the nucleus to the cyto-
plasm and that the kinase domain of BUB1 binds to the proline-rich 
linker region of PABPC1 in the cytoplasm upon cellular exposure to 
radiation or chemotherapy.

BUB1 regulates dsRNA levels through PABPC1
The canonical role of BUB1 is to function as a member of the SAC, 
ensuring chromosome integrity during mitosis (2–5, 58–60). Our 
results indicated that radiation induced the nucleus-to-cytoplasm 
migration of BUB1 and its interaction with PABPC1 (Fig. 3). To de-
fine the critical domain(s) in BUB1 required to suppress cytoplasmic 
dsRNA accumulation, we generated BUB1KD HCT116 cells reex-
pressing various Flag-tagged BUB1 mutants. Radiation induced more 
dsRNA accumulation in the BUB1KD HCT116 cells compared with 
that in VC cells, whereas reexpressing BUB1 mutants—including ki-
nase only, ΔTPR, Δ310, and Δ533—inhibited accumulation of dsRNAs 
after radiation in BUB1KD cells. However, reexpressing Δkinase mu-
tant did not (fig. S11, A and B). Consistently, mRNA levels of ISGs 
and expression of MDA5, RIG-I, and IRF7 in these cells also showed 
that reexpression of the BUB1 mutants, including kinase only, ΔTPR, 
Δ310, and Δ533, inhibited the expression of these genes (fig. S11, C to 
E). Moreover, reexpressing BUB1 kinase–dead mutant (D946A) did 
not affect MDA5/RIG-I pathway activity and dsRNA accumulation 
(fig. S11, F to J) in BUB1KD cells after radiation. Therefore, PABPC1-
BUB1 interaction and, specifically, the kinase activity of BUB1 regulate 
radiation-induced dsRNA accumulation and immune response.

We next demonstrated endogenous nuclear BUB1 translocation to 
cytoplasm using immunofluorescence staining (Fig. 4, A and B). In 
addition, using fractionation protein immunoblot analysis, we showed 
that radiation increased the levels of endogenous BUB1 in the cy-
toplasm and decreased its expression in the nucleus. Furthermore, 
Bay1816032 inhibited the radiation-induced cytoplasmic expression 
of BUB1 and increased the cytoplasmic level of PABPC1 (Fig. 4C 
and data file S5). Similar results were obtained in BUB1KD B16F10 
cells treated with radiation (fig. S12, A to C).

We also showed that PABPC1 strongly colocalized with dsRNA 
in irradiated BUB1KD HCT116 and MDA-MB-231 cells (Fig. 4D and 
fig. S12, D and E). In addition, using anti-PABPC1–RIP (RNA IP) 
assay, we showed that radiation increased PABPC1 binding to the 
dsRNA forms of ALDH3A1, ALDH3B1, and LY6D in BUB1KD 
HCT116 cells when compared with that in VC cells (Fig. 4, E to G). 
To further investigate whether PABPC1 was responsible for cytoplas-
mic dsRNA accumulation in BUB1-deficient cells upon radiation, we 
generated PABPC1KD HCT116 cells and treated them with radia-
tion and Bay1816032. Quantitative PCR (qPCR) analysis indicated 
that PABPC1 knockdown abrogated radiation-induced elevation of 
ISG mRNA in the presence of the BUB1 inhibition (fig. S12, F to I). 
Consistently, it also prevented radiation-induced dsRNA accumula-
tion in the presence of a BUB1 inhibitor (fig. S12, J and K).

To determine whether PABPC1 was functionally responsible for 
Bub1 deficiency–induced activation of MDA5 pathway and tumor 
growth suppression after radiotherapy, we generated Pabpc1KD and 
Bub1/Pabpc1DKD B16F10 cells (fig. S12L). As expected, depletion of 
Pabpc1 was sufficient to abrogate Bub1 inhibition–elicited ISG activa-
tion and tumor growth delay upon radiotherapy (Fig. 4, H to L).

In further experiments using truncated PABPC1 mutants to dem-
onstrate the importance of BUB1-PABPC1 interaction in suppress-
ing dsRNA accumulation, we showed that the RRM domain–only 
mutant, which can bind RNA but could not interact with BUB1, could 
strongly colocalize with radiation-induced dsRNA increase in the 
presence of a BUB1 inhibitor (fig. S12, M and N). On the other 
hand, the RRM-deleted mutant HA-ΔRRM1-4, which could not bind 
RNA, did not colocalize with dsRNA. Furthermore, the ΔPABC 
mutant, which behaved similarly to WT PABPC1 in co-IP experi-
ments (Fig. 3, F and G), could colocalize with dsRNA. Our results 
strongly suggest that the BUB1-PABPC1 interaction suppresses 
cytoplasmic dsRNA accumulation, viral mimicry, and ensuing acti-
vation of innate immunity in irradiated cells.

SGs and radiation-induced cytoplasmic dsRNA formation
SGs are ribonucleoprotein assemblies where the bulk of mRNA mol-
ecules accumulate. They usually form in response to stress-induced 
translation inhibition (15, 18, 20). SGs can form during viral infec-
tion and are thought to promote the antiviral response, and many 
viruses encode inhibitors of SG assembly (19, 20). Moreover, the 
G3BP1 protein plays an important role during viral infection to pre-
vent excessive innate immune response (61, 62). Our analysis of LC-
MS/MS indicated that many SG proteins, especially those associated 
with RNA processing and metabolism, were associated with BUB1, 
and the levels of association attenuated markedly after cellular ex-
posure to radiation (fig. S9E). It is well established that SGs con-
tain conserved RNA-protein complexes, including nontranslating 
mRNAs and RNA binding proteins, such as G3BP1, PABPC1, and 
TIA1 (23, 25, 49). We carried out co-IP assay and found that PABPC1 
and TIA1 were strongly recruited to G3BP1 SGs in irradiated BUB1-
deficient HCT116 cells (Fig. 4M and data file S5), and G3BP1 colo-
calized with accumulating dsRNA upon radiation treatment in these 
cells when compared with that in VC cells (Fig. 4, N and O). Because 
PABPC1 and G3BP1 are core components of SGs (17, 49), our re-
sults suggested that BUB1 affects SG protein assembly, especially on 
dsRNA accumulation within the SGs after stress exposures.

To determine whether SGs are required for activation of the 
MDA5 pathway, we used ISRIB (integrated stress response inhibitor), 
a small molecule that prevents the formation of SGs (63, 64), to treat 
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105 VC, Pabpc1KD, Bub1KD, or Bub1/Pabpc1DKD B16F10 cells and treated with radiotherapy (8 Gy). (M) IP/protein immunoblot analysis of the interaction between PABPC1, 
TIA1, and G3BP1 in VC and BUB1KD HCT116 cells. Lysates were collected from the cells exposed to 8-Gy x-rays for 48 hours and immunoprecipitated with an anti-G3BP1 
antibody. The immunoprecipitants were then subjected to protein immunoblot analysis. (N and O) Representative immunofluorescence costaining image (N) and quan-
tification of colocalization (O) of G3BP1 and dsRNA using an anti-G3BP1 antibody (magenta) and the anti-J2 antibody (green) in VC and BUB1KO HCT116 cells at 120 hours 
after exposure to 8-Gy x-rays. DAPI was used to indicate the nucleus. Scale bars, 10 μm. (P) Protein immunoblot analysis of the expression of MDA5 and RIG-I in VC and 
BUB1KD HCT116 cells treated with or without 200 nM ISRIB for 72 hours after exposure to 8-Gy x-rays. GAPDH was used as the protein loading control. Error bars represent 
SEM. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001; n.s., not significant, as determined by unpaired t test (B), two-way ANOVA [(E) to (K) and (O)], or log-rank test (L).
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irradiated HCT116 cells. Our results showed that ISRB treatment 
abrogated radiation-induced MDA5 pathway activation in BUB1-
deficient HCT116 cells or in Bay1816032-treated cells. In further 
experiments, we showed that doxorubicin also stimulated the colocal-
ization of G3BP1 and dsRNA in Bub1KD B16F10 cells more than VC 
cells and that Bay1816032 treatment promoted doxorubicin-induced 
dsRNA accumulation in SGs, as indicated by its colocalization with 
the well-established SG marker G3BP1 in the cytoplasm. ISRIB treat-
ment inhibited this accumulation (Fig. 4P and fig. S13, A to C). Fur-
thermore, whereas BUB1 deficiency induced dsRNA accumulation 
within the SGs after radiation, reexpressing BUB1 inhibited the 
colocalization of dsRNA and G3BP1 (fig. S13, D and E). These data 
therefore support the finding that BUB1 could restrain dsRNA ac-
cumulation within the SGs after radiation.

To determine whether G3BP1 was functionally involved in Bub1 
deficiency–induced tumor growth suppression after radiotherapy 
through increasing the accumulation of dsRNA in the SGs, we com-
pared the tumor formation rates of Bub1KD, G3bp1KD, and Bub1/
G3bp1-DKD B16F10 cells in syngeneic C57BL/6 mice combined with 
radiotherapy. As expected, deletion of G3bp1 (fig. S13, F to H) was 
sufficient to abrogate Bub1 inhibition–elicited tumor growth delay 
upon radiotherapy. To further prove that G3BP1 was functionally 
involved in Bub1 deficiency–mediated, radiation-induced dsRNA 
accumulation and ISG activation, we generated G3bp1KD B16F10 
cells and treated the cells with radiation and a BUB1 inhibitor. Radia-
tion and BUB1 inhibitor treatment–induced expression of MDA5, 
RIG-I, and IRF7 and ISG activation were abolished in G3bp1KD 
cells (fig. S13, I to K). In contrast, G3bp2 deficiency enhanced the 
expression of MDA5 and RIG-I and ISG activation after radiation and 
Bub1 inhibitor treatment (fig. S13, L to N). These results showed that 
G3bp1 and G3bp2 are nonredundant in BUB1 deficiency–mediated, 
radiation-induced MDA5/RIG-I pathway activation.

BUB1 phosphorylation of the PABPC1 linker and cytoplasmic 
dsRNA levels
Because BUB1’s kinase activity appeared critical in regulating PABPC1-
associated cytoplasmic dsRNA abundance, we explored whether BUB1 
phosphorylated PABPC1 upon irradiation. We first used a pan–anti–
phospho-serine/threonine/tyrosine antibody to test PABPC1 phosphor-
ylation status. Our co-IP/protein immunoblot assay indicated that WT 
(wild-type)–BUB1 could phosphorylate PABPC1 upon radiation expo-
sure, whereas a kinase–dead mutant BUB1KD could not (Fig. 5, A and 
B, and data file S5). These results thus suggested that PABPC1 was a sub-
strate of BUB1 kinase activity.

To identify the BUB1 phosphorylation site in PABPC1, we used 
a recently published database that profiled the substrate sequence 
specificity of 303 serine-threonine kinases (65) and predicted po-
tential BUB1 phosphorylation sites within the PABPC1 linker re-
gion (fig. S14A). After transducing the mutants into HCT116 cells, 
our qRT-PCR analysis revealed that radiation exposure induced 
expression of ISGs in both the STA (S478AT479AS485AT486A-
T501A) and the 4A (S478AT479AT501AT582A) mutants (with in-
activated potential phosphorylation sites) when compared with WT 
PABPC1 (Fig 5C and fig. S14, B to D). Moreover, both the STA and 
4A mutants elevated the basal levels of ISGs. These results sug-
gested that mutants with nonphosphorylatable sites in the proline-rich 
linker region were sufficient for stimulating the expression of ISGs. 
Further experiments showed that the PABPC1 STA mutant could 
not interact and colocalize with BUB1 upon radiation treatment 

(Fig. 5C and fig. S14, E and F). In comparison, the PABPC1/STD 
mutant (mimicking a constitutively phosphorylated PABPC1) not 
only inhibited radiation induction of MDA5 and IRF7 expression 
but also attenuated radiation-induced stimulation of ISGs in the 
presence of Bay1816032 (fig. S14, G to J). In further experiments, we 
reexpressed PABPC1/STD in HCT116 cells with PABPC1 knockout 
(PABPC1KD). We then treated the cells with radiation and a BUB1 
inhibitor (Bay1816032). BUB1 inhibition induced expression of IRF7 
and MDA5 and ISG activation in the VC cells after radiation, which 
were attenuated in the PABPC1KD cells and the PABPC1KD + STD 
cells but restored in PABPC1KD + PABPC1 cells (fig. S14, K to M). 
These results suggested that BUB1-mediated phosphorylation of PAB-
PC1 in the linker region was functionally important after cellular ex-
posure to radiation to suppress dsRNA accumulation and activation 
of type I IFNs.

BUB1 promotes PABPC1 degradation through 
phosphorylation-mediated ubiquitination
Given that BUB1 deficiency appeared to increase cytoplasmic PABPC1 
levels to boost the amount of dsRNA in the SGs after irradiation, 
we explored whether BUB1 kinase activity regulated proteasome-
mediated degradation of PABPC1. Our earlier results (Fig. 3B) al-
ready hinted at the potential ubiquitination of PABPC1 by BUB1. 
Radiation in combination with N-carbobenzyloxy-l-leucyl-l-leucyl-
l-leucinal (MG132), a proteosome inhibitor (66), induced a typical 
ubiquitination smear of PABPC1 in the HCT116 cells, which was ab-
rogated in BUB1KD HCT116 cells (Fig. 5, D and E). In addition, 
Bay1816032 also attenuated radiation-induced ubiquitination of 
PABPC1 (fig. S15A). These results suggested that radiation-induced 
ubiquitination of PABPC1 depended on the kinase activity of BUB1. 
Furthermore, we found that a kinase-dead mutant BUB1 inhibited 
the ubiquitination of PABPC1 and enhanced the cytoplasmic expres-
sion of PABPC1 upon radiation treatment when compared with WT 
BUB1 (Fig. 5F). Furthermore, additional co-IP assays revealed that 
the STA mutation, which abrogated PABPC1 phosphorylation by BUB1, 
completely avoided ubiquitination. The 4A mutant, which had a sin-
gle potential BUB1 phosphorylation site, consistently showed atten-
uated ubiquitination after radiation (Fig. 5G). These results provided 
strong evidence that BUB1 phosphorylation of PABPC1 was respon-
sible for mediating radiation-induced ubiquitination of PABPC1. In 
further support of the importance of BUB1-mediated PABPC1 phos-
phorylation, our J2/HA-RIP analysis indicated that the addition of a 
BUB1 kinase inhibitor in combination with radiation treatment en-
hanced the binding of ALDH3A1, ALDH3B1, and LY6D dsRNA to 
WT HA-PABPC1, but their binding to PABPC1 (STD) mutant was 
attenuated or abrogated (fig. S15, B to G).

Using the anti-J2–RIP assay, we showed that the BUB1 inhibitor 
increased J2 binding to the dsRNA after irradiation in the control 
cells, which was abolished in PABPC1KD cells. dsRNA levels could 
not be fully recovered in the PABPC1KD cells reexpressing PABPC1/
STD (fig. S15, H to J). Furthermore, we showed that BUB1 deficien-
cy increased J2 binding to the dsRNA after irradiation, which was 
not attenuated in BUB1KD cells reexpressing BUB1D946A, in con-
trast with those reexpressing WT BUB1 (fig. S15, K to M).

We next attempted to determine which type of lysine side chain with-
in ubiquitin (Ub) was responsible for the ubiquitination of PABPC1. 
We generated seven mutant Ub genes, each leaving only one of the 
seven lysine residues intact. Our co-IP results showed that PABPC1 
preferentially interacted with the K27-intact Ub (fig. S15N). This is 
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Fig. 5. BUB1 promotes phosphorylation-mediated ubiquitination and degradation of PABPC1 after cellular exposure to DNA damage. (A) IP/protein immunoblot 
analysis of Flag-BUB1 and HA-PABPC1 cotransduced HCT116 cells at 24 and 72 hours after exposure to 8-Gy x-rays. The lysates were immunoprecipitated with an anti-HA 
antibody and probed with an anti–phospho-serine/threonine/tyrosine antibody to detect potential phosphorylation of PAPBC1. (B) IP/protein immunoblot analysis of the 
Flag-BUB1 or Flag-BUB1D946A (kinase dead) mutant and HA-PABPC1 cotransduced HCT116 cells at 72 hours after exposure to 8 Gy of x-rays. The lysates were immuno-
precipitated with an anti-HA antibody and probed with an anti–phospho-serine/threonine/tyrosine antibody by protein immunoblot analysis. (C) IP/protein immunoblot 
analysis of the interaction between Flag-BUB1 and HA-PABPC1, or HA-PABPC1STD, or HA-PABPC1STA mutants at 72 hours after exposure to 8-Gy x-rays. (D) IP/protein 
immunoblot analysis of Flag-BUB1 and HA-PABPC1 cotransduced HCT116 cells at 72 hours after exposure to 8-Gy x-rays and treatment with or without 1 μM MG132. 
Lysates were immunoprecipitated with an anti-HA antibody and probed with anti-Ub antibody by protein immunoblot analysis. (E) IP/protein immunoblot analysis of the 
Myc-Ub and HA-PABPC1–cotransduced BUB1KD HCT116 and VC cells at 72 hours after exposure to 8-Gy x-rays and treatment with or without 1 μM MG132. Lysates from 
transduced cells were immunoprecipitated with an anti-HA antibody and probed with anti-Ub antibody by protein immunoblot analysis. (F) IP/protein immunoblot 
analysis of the Flag-BUB1 or Flag-BUB1D946A (kinase dead) and HA-PABPC1–cotransduced HCT116 cells at 72 hours after exposure to 8 Gy of x-rays and treatment with 
or without 1 μM MG132. The lysates were immunoprecipitated with an anti-HA antibody and probed with anti-Ub antibody on a protein immunoblot. (G) IP/protein im-
munoblot analysis of the Myc-Ub, Flag-BUB1, and WT or phosphorylation mutant HA-PABPC1 cotransduced HCT116 cells at 72 hours after exposure to 8-Gy x-rays. Lysates 
were immunoprecipitated with an anti-HA antibody and probed with anti-Myc antibody on a protein immunoblot. (H) IP/protein immunoblot analysis of the Myc-Ub, 
Flag-BUB1, and full-length or truncated HA-PABPC1 cotransduced HCT116 cells at 72 hours after exposure to 8-Gy x-rays. Lysates from transduced cells were immunopre-
cipitated with an anti-HA antibody and probed with anti-Myc antibody by protein immunoblot analysis. (I) IP/protein immunoblot analysis of Flag-BUB1 and WT or lysine 
7KR mutant HA-PABPC1–cotransduced HCT116 cells at 72 hours after exposure to 8-Gy x-rays. Lysates from transduced cells were immunoprecipitated with an anti-HA 
antibody and probed with anti-Ub antibody by protein immunoblot analysis.
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consistent with early studies that implicated noncanonical K27 
poly-Ub as a major player in innate immunity (67–69).

We attempted to identify the lysine residue(s) in PABPC1 that 
were responsible for its ubiquitination. Using different PABPC1 trun-
cation mutants, we showed that RRM, ΔPABC, and ΔRRM1-2 ver-
sions of PABPC1 were ubiquitinated upon radiation treatment, but 
ubiquitination of the ΔRRM1-4 construct mutant of PABPC1 was 
almost abolished (Fig. 5H). These data suggested that RRM3-4 domains 
most likely contain the ubiquitination site(s). To narrow down the ubiq-
uitinated site(s) of PABPC1 in the RRM3-4 domain, we used the Rapid 
UBIquitination (RUBI) detection algorithm (70) to predict potential 
ubiquitination sites within the RRM3-4 domain. RUBI identified seven 
sites as potentially ubiquitinated. To confirm that these were in-
volved, we generated the PABPC1-7KR mutant, where all seven likely 
ubiquitinated lysine sites were mutated. As expected, PABPC1 ubiquiti-
nation was absent in the 7KR mutant upon radiation treatment, in con-
trast with WT PABPC1 (Fig. 5I). These data thus established the seven 
lysine residues within the RRM3-4 domains of PABPC1 as the most 
likely sites of BUB1-mediated ubiquitination and degradation.

How does PABPC1 regulate mRNA stability in the SGs? Previous 
studies demonstrate that the interaction between PABPC1 and ERF3 
(eukaryotic release factor 3) can help prevent nonsense-mediated 
mRNA decay (NMD) by physically blocking the recruitment of NMD 
factors to the termination complex (71–73). Consistent with these 
earlier findings, our data indicated that BUB1 deficiency enhanced 
PABPC1-bound ERF3, attenuating UPF1 (Up-frameshift suppressor 
1) phosphorylation, a key event in NMD activation (fig. S15, O to Q). 
Therefore, radiation-induced dsRNA stabilization in BUB1-deficient 
cells appears to involve attenuation of the NMD pathway.

DISCUSSION
In diverse human cancers, high BUB1 expression predicts a worse 
prognosis. Our data confirmed earlier studies that demonstrate that 
BUB1 inhibition augments sensitivity to radiotherapy (13) and che-
motherapy (12). We further elucidate BUB1’s role in modulating 
cytosolic dsRNA dynamics, thereby regulating the RIG-I/MDA5–
mediated pathway and type I IFN responses after radiotherapeutic 
and chemotherapeutic interventions. Our finding ascribes a previously 
undescribed function to BUB1, extending its influence beyond mitotic 
regulation to encompass critical determinants of cytoplasmic RNA me-
tabolism and innate immune responses under genotoxic stress.

Conceptually, our study supports BUB1 inhibition as an avenue 
to increase cytotoxic therapy for tumors, using BUB1 inhibitors as 
potential “immunological radiosensitizers.” These agents primarily 
potentiate the efficacy of intratumoral immune effector cells rather 
than directly enhancing the cytotoxicity of radiation or chemotherapy 
to tumor cells. Clinical observations substantiate this mechanism by re-
vealing a correlation between high BUB1 expression and reduced im-
mune cell recruitment and activation posttherapy, correlating with 
diminished patient survival. Therefore, BUB1 emerges as a promising 
target to augment the effectiveness of radiotherapy and immunotherapy.

In terms of fundamental BUB1 biology, contrary to its estab-
lished nuclear role, we show that BUB1 can translocate to the cyto-
plasm under DNA damage, regulating dsRNA and innate immunity, 
a function previously unanticipated for an SAC protein. This dual 
role of BUB1 suggests that it functions as a liaison between cellular 
stress responses, ensuring a balanced activation of innate immunity, 
thereby preventing its hyperactivation and potentially harmful effects.

One limitation of our study is that in vivo anti-BUB1 studies 
were not conducted in human patients or humanized tumor models. 
Therefore, the relevance of our conclusions to human patients awaits 
future clinical studies.

In conclusion, our study highlights a critical mechanism where 
BUB1-mediated phosphorylation leads to PABPC1 ubiquitination and 
degradation within SGs, mitigating DNA damage–induced dsRNA 
accumulation and restraining the innate immune response. This rev-
elation expands our understanding of BUB1’s repertoire of biologi-
cal functions and underscores the therapeutic potential of targeting 
BUB1 to enhance cancer treatment efficacy.

MATERIALS AND METHODS
Study design
This study investigated the role of the mitotic kinase BUB1 in regu-
lating cytoplasmic dsRNA accumulation after DNA damage and the 
subsequent immune response, using various genetically modified 
cancer cell lines. To evaluate how BUB1 inhibition affects tumor re-
sponse to cytotoxic therapy, we treated mice bearing subcutaneous 
tumors with radiotherapy or chemotherapy combined with immu-
notherapy. We characterized cytoplasmic dsRNA accumulation and 
activation of the MDA5/MAVS dsRNA-sensing pathway in irradi-
ated, BUB1-deficient cells using mass spectrometry, flow cytometry, 
bulk RNA-seq, immunoblotting, and qRT-PCR. Furthermore, we 
analyzed public databases (TCGA and CGGA) to determine the re-
lationship among BUB1 expression levels, intratumoral lymphocyte 
infiltration, and survival in radiotherapy-treated patients with can-
cer. Key experiments were replicated at least twice, with sample siz-
es, replicates, and statistical methods detailed in the figure legends. 
Information on materials used in this study, including cell lines and 
molecular biology agents, is listed in table S1.

Cell culture and x-ray exposure
B16F10 mouse melanoma cells, 4T1 mouse breast carcinoma cells, 
MDA-MB-231 human breast cancer cells, and HCT116 colon can-
cer cells were purchased from the Cell Culture Facilities of Duke 
University School of Medicine. B16F10, HCT116, 4T1, and MDA-
MB-231 cells were all grown in Dulbecco’s modified Eagle’s medium 
(DMEM) (Sigma-Aldrich) with 10% fetal bovine serum (FBS). All 
cell lines were periodically subjected to a mycoplasma test using 
the Universal Mycoplasma Detection Kit (American Type Culture 
Collection). In some cases, we conducted x-ray irradiation using 
an X-Rad320 irradiator (Precision; 320 kV and 12.5 mA; part of 
Duke University School of Medicine Shared Resources) at room tem-
perature. For animal experiments, mice were irradiated on days 8 
and/or 11 with 8 gray (Gy) after inoculation of tumor cells into 
shaved flanks subcutaneously.

Plasmid construction
Human 3×Flag Bub1, HA-PABPC1, and Myc-Ub genes were ampli-
fied with Taq 2X Master Mix (M0270L, NEB) using human cDNA 
made from human embryonic kidney–293 T cells and then cloned 
into lentivirus-based pLex or pLenti-CMV-Neo (no. 17447, Addgene) 
vector. Catalytically inactive Bub1 (kinase dead) mutant, truncated 
Bub1 (ΔTPR, Δ310, Δ533, kinase domain, and Δkinase domain), 
truncated PABPC1s (RRM, ΔPABC, ΔRRM1-2, and ΔRRM1-4), and 
phosphorylated site-mutated PABPC1 were constructed using Gibson 
Assembly Master Mix (E2611, NEB) according to the manufacturer’s 
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instructions. Plasmids encoding PABPC1 short hairpin RNAs were 
purchased from Sigma-Aldrich (26986, NM_002568).

CRISPR-Cas9–mediated gene knockout
Bub1 knockout cells were generated using lentivirus-mediated CRISPR-
Cas9 technology. Single-guide RNA (sgRNA) sequences targeting 
mouse and human Bub1 genes are listed in table S2. Double-stranded 
oligos encoding the sgRNA sequences were cloned into BsmB1 (Thermo 
Fisher Scientific)–digested plasmid lentiCRISPRv2 (deposited by 
F. Zhang of the Massachusetts Institute of Technology to Addgene), 
which coexpresses Cas9 and sgRNA in the same vector. CRISPR len-
tivirus vectors were then produced according to an established pro-
tocol by the Zhang laboratory. To generate knockout cell lines, target 
cells were infected with lentivirus, cultured in DMEM (with 10% FBS), 
and selected in puromycin (1 μg/ml for B16, HCT116, CT2A, LLC, 
and MDA-MB-231 cells and 2 μg/ml for 4T1 cells). The primers used 
are listed in table S2.

Tumor growth and treatment in mice
All animal experiments conducted in this study were approved by 
Duke University Institutional Animal Use and Care Committee (A105-
23-24). C57BL/6J and Balb/C mice were purchased from the Jackson 
Laboratory. Nude mice were purchased from the Division of Labora-
tory Animal Resources of Duke University. Before tumor cell injection, 
age-matched 6- to 8-week-old mice were shaved at one of the flanks. 
Tumor cells were then injected into shaved flanks subcutaneously with 
lentiCRISPRv2 modified control or target gene-specific knockout tu-
mor cells. Tumor volumes were measured every 2 to 3 days and calcu-
lated by the formula (length) × (width)2/2. The mice were sacrificed 
when tumors reached 2000 mm3. For x-ray exposure, the tumor-
bearing flanks of tumors were irradiated with x-rays using an 
X-Rad320 irradiator (Precision) with 320 kV and 12.5 mA and with 
lead shielding to avoid exposure to unintended areas of the mouse’s 
body. For the Bub1 inhibitor treatment, mice were treated orally with 
vehicle [10% dimethyl sulfoxide (DMSO) and 90% corn oil] and 
Bay1816032 (10 mg/kg; dissolved in 10% DMSO and 90% corn oil) as 
indicated in tables and figure legends. For antibody treatments, mice 
were given 100 μg of antibody via intraperitoneal injection on days 9, 
12, and 15 post–tumor cell injection using the following antibodies: 
anti-PD1 (clone 29F.1A12) or isotype (clone 2A3) from Bio X Cell.

Lymphocyte depletion
To evaluate the role of specific subsets of immune effector cells in 
mice, we depleted CD4+ T cells, CD8+ T cells, and NK cells with 100 μg 
of intraperitoneally injected anti-CD4 (GK1.5, Bio X Cell), 100 μg 
per mouse of anti-CD8b (53-5.8, Bio X Cell), anti-NK1.1 (PK136, 
Bio X Cell), anti-CD317 (PDCA-1, Bio X Cell), anti-Ly6G/Ly6C 
(Gr-1, Bio X Cell), and 1 mg per mouse of Standard Macrophage 
Depletion Kit (Clodrosome + Encapsome, SKU no. CLD-8901, 
Encapsula NanoSciences), respectively, on days 11, 14, 17 after irra-
diation on days 8 and 11. Equal amounts of immunoglobulin G (IgG) 
isotype antibodies (Bio X Cell) were injected as control (table S1).

Analysis of TILs by flow cytometry
About 1 × 105 Bub1 knockout or VC cells were inoculated subcuta-
neously into C57BL/6J mice. Tumors were excised on day 14 after inocu-
lation (treated with radiation on day 8), weighted, and mechanically 
minced and incubated in deoxyribonuclease (DNase) I (50 μg/ml; 
Sigma-Aldrich) and collagenase P (2 mg/ml; Sigma-Aldrich) for 

20 min at 37°C. The dissociated cells were passed through a 70-μm 
cell strainer (BD). The filtered cells were then blocked with an anti-
CD16/32 antibody (BioLegend) and stained with indicated surface 
antibodies for 20 min on ice. Dead cells were excluded using LIVE/
DEAD Fixable Aqua dye (Thermo Fisher Scientific). Intracellular 
antibodies were added after fixation and permeabilization follow-
ing the manufacturer’s instructions (Thermo Fisher Scientific). The 
anti-mouse fluorochrome-conjugated antibodies are listed in 
the “Antibodies” and “Reagents and kits” sections in table S1. The 
stained cells were analyzed using a BD Canto flow cytometry sys-
tem. The gating strategy for intratumoral lymphocyte analysis is 
shown in fig. S4A.

In vitro colony formation assay
To compare the clonogenic efficiency of control and Bub1KO, B16F10/
4T1 cells were seeded in 10-cm plates at 200 cells per plate in triplicate 
without treatment and 1000 cells per plate in triplicate after exposure 
to 8-Gy x-ray and allowed to grow for 14 days before staining with 
crystal violet (dissolved in 20% H2O and 80% methanol).

Protein immunoblotting
Cell lysates were boiled in SDS sample loading buffer, resolved by 
10% SDS–polyacrylamide gel electrophoresis, and transferred to 
nitrocellulose. The membranes were blocked in 5% milk in tris-
buffered saline and Tween 20 [TBST; 10 mM tris-HCl (pH 8.0), 150 mM 
NaCl, and 0.1% Tween 20] for 1 hour at room temperature. After wash-
ing twice with TBST, the membranes were incubated with appropriate 
primary antibodies in bovine serum albumin/TBST overnight and then 
washed three times with TBST and probed with horseradish peroxi-
dase–linked anti-Ig (1:5000 dilution) for 1 hour at room temperature. 
After three washes with TBST, immunoreacted products were visualized 
using enhanced chemiluminescence reagent and autoradiography.

Immunofluorescence staining
Cells mounted on 35-mm glass-bottom poly-d-lysine–coated dishes 
were fixed with 4% paraformaldehyde for 20 min after treatment, 
permeabilized with cold phosphate-buffered saline (PBS) contain-
ing 0.1% Triton X-100 for 15 min, blocked with 4% bovine serum in 
PBS for 1 hour at room temperature, then incubated with primary 
antibodies (listed in table S1) at room temperature for 3 hours and 
detected by fluorescein isothiocyanate–labeled anti-IgG (1:400) and 
Cy3-labeled antibody at room temperature for 1 hour. Cells were 
costained with 4′,6-diamidino-2-phenylindole (DAPI) to visualize 
the nuclei. Immunofluorescence images were then obtained using a 
fluorescence microscope.

Fractionation of nuclear and cytosolic fractions
Vector control and Bub1KO cells were treated with Bub1 inhibitor or 
MG132 on day 3 after exposure to 8-Gy x-ray. The cells were collected 
and washed using cold PBS, and the cytoplasmic proteins were extracted 
using NE-PER Nuclear and Cytoplasmic Extraction Reagents (cat. 
no. 78833, Thermo Fisher Scientific) according to the manufacturer’s 
instructions. In protein immunoblot analysis, we used glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) as a loading control for the cyto-
plasmic fraction and histone H3 for the nuclear fraction.

Co-IP
Cells were harvested in lysis buffer [10 mM tris (pH 7.4), 150 mM NaCl, 
1% Triton X-100, and 5 mM EDTA, containing protease inhibitors]. 
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Lysate was incubated with 1 μg of antibody at 4°C for 2 hours. 
Immunocomplexes were then precipitated with 30 μl of protein 
A/G Sepharose. After extensive washing with lysis buffer, the beads 
were boiled in SDS sample loading buffer and assessed by protein 
immunoblotting (Western blot). HCT116 cells overexpressed with 
HA-PABPC1, Flag-Bub1, and Myc-Ub were harvested on day 3 after 
exposure to 8-Gy x-ray and analyzed by co-IP using anti-Myc, anti-
HA, or anti-Flag antibody.

RNA extraction
RNA was extracted using the TRIzol Reagent (cat. no. 15596018, 
Ambion by Life Technologies). Briefly, we rinsed the cells with ice-
cold PBS and then added 1 ml of TRIzol to lyse the cells. Next, 
we scraped the lysate from the petri dish, incubated it at room 
temperature for 5 min, and added 200 μl of chloroform (cat. no. 
C2432, Sigma-Aldrich) with vigorous vortexing for 15 s. We then 
incubated the mixture at room temperature for 10 min and centri-
fuged it at 12,000g for 10 min at 4°C. Next, we transferred the trans-
parent top layer, added 500 μl of isopropanol, and then incubated 
it at room temperature for 10 min. The mixture was then centri-
fuged at 12,000g for 10 min at 4°C. After removing the superna-
tant, the pellet was washed with 75% ethanol and centrifuged at 
7500g for 5 min at 4°C. The RNA was then air-dried and dissolved 
in 85 μl of ribonuclease (RNase)–free H2O. Subsequently, we add-
ed 5 μl of DNase (cat. no. AM2238, Invitrogen) and 10 μl of 10× 
TURBO DNase buffer to degrade the remaining DNA at 37°C for 
30 min. We then repeated the RNA extraction procedures as de-
scribed above. Last, we dissolved total RNA free of DNA contami-
nation in RNase-free H2O and used it for subsequent qPCR and bulk 
RNA-seq analysis.

RNA sequencing
Total RNAs from VC and Bub1KO B16F10 cells on day 3 after expo-
sure to 8-Gy x-rays were prepared as described above, and genome-
wide transcriptome analysis was then performed through the Duke 
Center for Genomic and Computational Biology for sequencing, 
which quality-checked the samples and prepared cDNA libraries for 
analysis using Illumina NovaSeq 6000. RNA-seq data were processed 
using the Trim Galore tool kit, which uses Cutadapt to trim low-
quality bases and Illumina sequencing adapters from the 3′ end of the 
reads. Only reads that were 20 nucleotides or longer after trimming 
were kept for further analysis. Reads were mapped to the GRCm38.p6 
of the mouse genome and transcriptome using the STAR RNA-seq 
alignment tool. Reads were kept for subsequent analysis if they 
mapped to a single genomic location using the SAMtools. Gene 
counts were compiled using the HTSeq tool. Only genes that had at 
least 10 reads in any given library were used in subsequent analysis. 
Normalization and differential expression were carried out using the 
DESeq27 Bioconductor package with the R statistical programming 
environment. Differentially expressed genes were displayed in heat-
maps and volcano plot using the R program (version 3.6.0). GSEA 
version 10 was used to identify differentially regulated pathways and 
GO terms for the comparisons were used.

qRT-PCR and qPCR
To quantify RNA expression levels, we used the TRIzol-extracted 
total RNA (described above) as the template for cDNA synthesis us-
ing random hexamer primers (cat. no. SO142, Invitrogen by Thermo 
Fisher Scientific) and SuperScript II Reverse Transcriptase (cat. 

no. 18064014, Invitrogen by Thermo Fisher Scientific) following the 
manufacturer’s instructions. Afterward, we performed qRT-PCR of 
the cDNA using qPCRBIO SyGreen Blue Mix Hi-ROX (cat. no. 17-
506C, Genesee Scientific) and the Applied Biosystems ViiA 7 Real-
Time PCR System with 384-Well Block (cat. no. 4453536, Thermo 
Fisher Scientific). We used the comparative Ct (ΔΔCt) method to 
normalize the expression of individual genes based on β-actin and 
to compare the relative changes of gene expression among different 
groups. The primers used are listed in table S3.

LC-MS/MS analysis
To identify BUB1-associated proteins after exposure to x-ray, HCT116 
cells infected with Flag-Bub1 or Flag control were collected on day 3 
after exposure to x-ray and then were lysed with buffer [10 mM tris 
(pH 7.4), 150 mM NaCl, 1% Triton X-100, and 5 mM EDTA, con-
taining protease inhibitors]. The lysate was centrifuged at 13,000 rpm 
for 15 min, and the supernatant was filtered through a 0.22-mm 
filter (Millipore) followed by the addition of 60 ml of anti-Flag aga-
rose beads (Sigma-Aldrich) and incubation at 4°C for 4 hours with 
rotations. After IP, the beads were washed two times with buffer II 
[50 mM Hepes (pH 7.5), 50 mM NaCl, 10 mM EDTA, and 0.1% 
Triton X-100] and two times with buffer III [50 mM Hepes (pH 7.5), 
150 mM NaCl, 10 mM EDTA, and 0.1% Triton X-100]. The immuno-
precipitates were then eluted with 75 ml of 33 Flag peptide (20 mg/ml; 
Sigma-Aldrich) for 1 hour and submitted to the Duke Proteomics 
Core Facility for trypsin digestion and LC-MS/MS analysis as 
previously described.

STRING analysis
BUB1-interacting proteins up-regulated or down-regulated, as iden-
tified by LC-MS/MS analysis after cellular exposure to radiation, are 
listed in tables S4 and S5. The STRING website was used to obtain 
the GO networks associated with the proteins.

RIP qPCR assay
Two 10-cm plates of VC and BUB1KO HCT116 cells at 90% conflu-
ence were rinsed twice in ice-cold PBS on day 4 after exposure to 
8-Gy x-rays, cross-linked at 254 nm (150 mJ/cm2), collected, and lysed in 
1 ml of buffer [10 mM tris (pH 7.4), 150 mM NaCl, 1% Triton X-100, 
and 5 mM EDTA, containing protease inhibitors] with RNase inhibi-
tor (100 U/ml; Promega N2115). After being kept on ice for 30 min, the 
cell lysate was centrifuged at 13,000 rpm for 15 min, and the super-
natant was collected. One-tenth (volume) of the supernatant was 
kept as “input” for sample loading quantification, and the rest was 
subjected to IP. Meanwhile, the anti-HA antibody, anti-J2 antibody, 
and anti-PABPC1 were conjugated to 50 ml of protein A/G beads 
and rotated at 4°C for 4 hours, followed by washing three times with 
RIP buffer [150 mM KCl, 25 mM tris (pH 7.4), 5 mM EDTA, 0.5 mM 
dithiothreitol, and 0.5% NP-40]. Then, the antibody-conjugated pro-
tein A/G beads were incubated with the precleared cell lysate at 4°C 
overnight. Last, the protein A/G magnetic beads were washed three 
times with RIP buffer and resuspended in the TRIzol Reagent for 
RNA extraction. The IP and Input RNA samples were subjected to 
1 ml of TRIzol extraction and reverse transcription using the first-
strand cDNA synthesis kit (Thermo Fisher Scientific) following the 
manufacturer’s manual. qPCR was then performed using FastStart 
Universal SYBR Green Master Kit (Roche). The binding of PABPC1 
to RNA was then quantified by the ratio of IP RNA normalized to the 
Input RNA. The primers used are listed in table S3.
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Strand-specific RT-PCR
VC and BUB1KD HCT cells were harvested at 120 hours after radia-
tion, and the cytoplasmic proteins were extracted using NE-PER 
Nuclear and Cytoplasmic Extraction Reagents (cat. no. 78833, Thermo 
Fisher Scientific) according to the manufacturer’s instructions. RNA 
was extracted from the cytoplasmic part, and both chains (sense 
and antisense) of dsRNA were quantified through strand-specific 
RT-PCR (45). The primers used are listed in tables S6 and S7.

CIBERSORT analysis of the intratumoral lymphocyte 
infiltration in human tumors
CIBERSORT is a bioinformatics tool for characterizing the status of 
anticancer immunity and the proportion of tumor-infiltrating im-
mune cells. We conducted a CIBERSORT analysis of patients with 
glioma from the CGGA database (www.cgga.org.cn/index.jsp) based 
on their RNA expression data using an online CIBERTSORT analy-
sis tool, TIP (http://biocc.hrbmu.edu.cn/TIP/), to visualize the im-
mune cell subset of the tumor samples.

Statistical analysis
Quantitative data are presented as means ± SEM, and statistical sig-
nificance is reported in the figures and/or figure legends. Analysis of 
variance (ANOVA) with Tukey’s post hoc test (one-way ANOVA for 
comparisons between groups and two-way ANOVA for comparisons 
of magnitude of changes between different groups) was used to com-
pare values among different experimental groups using the GraphPad 
PRISM program. For experiments with only two groups, Student’s 
t test was used as specified in the figure legends. P < 0.05 was consid-
ered statistically significant (*), P < 0.01 as highly significant (**), 
P < 0.001 (***) and P < 0.0001 as extremely significant (****), and 
n.s. as not significant. Kaplan-Meier estimator and log-rank (Mantel-
Cox) tests were used for survival analysis of tumor-bearing mice.

Supplementary Materials
The PDF file includes:
Figs. S1 to S16
Tables S1 to S7
Legends for data files S1 to S5

Other Supplementary Material for this manuscript includes the following:
Data files S1 to S5
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