PI
Research Group
Maximina Hee Yun
max.yun(at)cimrbj.ac.cn
Associate Investigator
B.S. in Molecular Biology, University of Buenos Aires, Argentina
Ph.D. in Genetics and Biochemistry, University of Cambridge, UK
Work Experience
2025-Present
Associate Investigator, Chinese Institutes for Medical Research, Beijing, China
2017-2025
Research Group Leader, Center for Regenerative Therapies Dresden, Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
2016-2017
Independent Research Associate, University College London, UK
2009-2016
Postdoctoral Fellow, University College London, UK
Research Direction

Humans exhibit rather limited capabilities for tissue repair and regeneration. In contrast, organisms with remarkable regenerative abilities can be found in nature. Among these, salamanders (such as newts and axolotls) are considered the champions of regeneration, being able to regrow an extraordinary range of complex structures including ocular tissues, tail, jaws, large sections of their heart, parts of their nervous system, and entire limbs throughout their life. As such, the salamander constitutes an ideal system in which to learn how accurate regeneration of body structures can be achieved.

 

The Yun lab at CIMR aims leverages experimentally tractable salamander systems in order to unveil the cellular and molecular mechanisms underlying organ regeneration, determine how phylogenetic changes affect regenerative potential, and probe the links between regeneration and ageing.

Major Research Projects

1. Regulation of cellular plasticity during regeneration

 

2. Cellular and molecular basis of de novo thymus regeneration
 
 
3. Understanding ageing in contexts of enhanced regenerative potential
 
4. Mechanisms underlying indefinite regenerative capacity
 
Major Contributions
1. Discovered that axolotls regenerate their entire thymus de novo, extending our knowledge of the limits of vertebrate regeneration (Science Immunology, 2025)

2. Discovered intrinsic and extrinsic factors governing cell dedifferentiation (PNAS, 2013; Stem Cell Reports, 2014; Aging Cell, 2023) and positional identity (Nature Commun, 2022)

3. Uncovered critical roles of senescent cells in vertebrate development and regeneration (eLife, 2015; Development, 2017; Aging Cell, 2023; Developmental Cell, 2023) and contributed guidelines for studies of cell senescence in vivo (Cell, 2024)

4. Uncovered basic mechanisms of double-strand break repair, critical for genome stability maintenance and senescence avoidance (Nature, 2009)

Representative Publications     *:Co-first author; #:Co-corresponding author
Representative Publications *:Co-first author; #:Co-corresponding author
Czarkwiani A., Lobo M., Bolanos Castro L.A., Petzold A., Rost F., Maehr R.# & Yun M.H.#. Molecular basis for de novo thymus regeneration in a vertebrate, the axolotl. Science Immunology, 2025, 10: eadw9903. DOI: 10.1126/sciimmunol.adw9903

Brown T., Mishra K., Elewa A., Iarovenko S., Subramanian E., Joven A., Petzold A., Fromm B., Friedlander M., Susuki M., Hayashi T., Suzuki K., Toyoda A., Oliveira A.C., Osipova E., Hiller M., Leigh N.#, Yun M.H.#, Simon A.#. Chromosome-Scale Genome Assembly Reveals How Repeat Elements Shape Non-Coding RNA Landscapes Active During Newt Limb Regeneration. Cell Genomics, 2025, 5: 100761. DOI: 10.1016/j.xgen.2025.100761

Haluza Y., Zoller J., Walters H., Lachnit M., Hagahni A., Lu A., Low R., Park N., Brooke R., Yun M.H.#, Horvath S.#. Axolotl epigenetic clocks offer insights into the nature of negligible senescence. bioRxiv, 2024. DOI: 10.1101/2024.09.09.611397

Yu Q., Walters H.E., Pasquini G., Pal Singh S., Lachnit M., Oliveira C.R., León-Periñán D., Petzold A., Kesavan P., Subiran Adrados C., Garteizgogeascoa I., Knapp D., Wagner A., Bernardos A., Alfonso M., Nadar G., Graf A.M., Troyanovskiy K.E., Dahl A., Busskamp V., Martínez-Máñez R., Yun M.H.#. Cellular senescence promotes progenitor cell expansion during axolotl limb regeneration. Developmental Cell, 2023, 58: 2416–2427. DOI: 10.1016/j.devcel.2023.09.009

Walters H.#, Troyanovskiy K., Graf A., Yun M.H.#. Senescent cells enhance newt limb regeneration by promoting muscle dedifferentiation. Aging Cell, 2023, 22: e13826. DOI: 10.1111/acel.13826

Oliveira C.R., Knapp D., Elewa A, Gonzalez Malagon S., Gates P.B., Petzhold A., Arce H., Cordoba R.C., Chara O., Tanaka E. M., Simon A., Yun M.H.#. Tig1 regulates proximo-distal identity during salamander limb regeneration. Nature Communications, 2022, 13: 1141. DOI: 10.1038/s41467-022-28755-1

Woych J., Ortega Gurrola A., Deryckere A., Jaeger E., Gumnit E., Merello G., Gu J., Joven Araus A., Leigh N., Yun M.H., Simon A., Tosches M.A. Cell-type profiling in salamanders identifies innovations in vertebrate forebrain evolution. Science, 2022, 377: 1063. DOI: 10.1126/science.abp9186

Yun M.H.#, Davaapil H. & Brockes J.P. Recurrent turnover of senescent cells during regeneration of a complex structure. eLife, 2015, 4: e05505. DOI: 10.7554/eLife.05505

Yun M.H.#, Gates P.B. & Brockes J.P. Regulation of p53 is critical for vertebrate limb regeneration. PNAS, 2013, 110: 17392-7. DOI: 10.1073/pnas.1310519110

Yun M.H. & Hiom K.J.#CtIP-BRCA1 modulates the choice of DNA double-strand-break repair pathway throughout the cell cycle. Nature, 2009, 459: 460–463. DOI: 10.1038/nature07955